# What is Recursion??? 

Regarding Chapter 9 of

The Little Schemer

We are used to thinking of recursion as "a function calling itself", but what does that mean? We can make a function with a lambda expression. For example, (lambda $(\mathrm{x})(* 2 \mathrm{x})$ ) is a function that takes a number and doubles it.

We can create such a function without defining it; define extends the environment and that shouldn't have anything to do with creating a function. But what about a function such as length:
(define length
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { null? lat) } 0]} \\
& {[\text { else (add1 (length (cdr lat)))]))) }}
\end{aligned}
$$

How can we define such a function without extending the environment?

Well, first of all we need some place to start. I am going to extend the environment with one special function, which eventually we won't need.
(define eternity (lambda (x) (eternity x$)$ ))
This is the stupid recursion that your mother warned you about. For any argument a, (eternity a) never terminates.

Now consider the following function:
(define L (lambda (f)
(lambda (lat)
(cond
[(null? lat) 0] [else (add1 (f (cdr lat)))]))))

The body here is somewhat like our length function.
(define L (lambda (f)
(lambda (lat)
(cond

$$
\begin{aligned}
& \text { [(null? lat) 0] } \\
& \text { [else (add1 (f (cdr lat)))])))) }
\end{aligned}
$$

Consider
(define LO (L eternity))
This is

```
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 (eternity (cdr lat)))])))
```

This returns 0 for an empty lat, and fails if the lat is not empty.
(define L (lambda (f)
(lambda (lat) (cond
[(null? lat) 0]
[else (add1 (f (cdr lat)))]))))
(define LO (L eternity))
Now consider
(define L1 (L LO)) which is (L (L eternity)).
This is (lambda (lat)
(cond

```
[(null? lat) 0]
[else (add1 (LO (cdr lat))]))
```

This returns 0 if the lat is empty, 1 if the (cdr lat) is empty, and fails otherwise.
(define L (lambda (f)
(lambda (lat) (cond
[(null? lat) 0] [else (add1 (f (cdr lat)))]))))
(define LO (L eternity))
(define L1 (L LO)) which is (L (L eternity)).
Similarly we can define
(define L2 (L L1) ) which is (L (L (L eternity)))
(define L3 (L L2)) and so forth.
(L3 lat) correctly gives the lenght of any lat with length 3 or less, but fails for lats longer than 3.
(define L (lambda (f)
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { nulll? lat) 0] }} \\
& \text { [else (add1 (f (cdr lat)))])))) }
\end{aligned}
$$

Here is another way to get at this. Consider
(define M1 ((lambda (x) (xx))
(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((f eternity) (cdr lat)))])))))
It is hard to even parse this. M1 is the application of (lambda (x) (xx)) to the lambda (f) expression.

## (define M1 ((lambda (x) (xx))

(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((f eternity) (cdr lat)))])))))

If we let $x$ be that lambda(f) expression, it isn't hard to see that ( $x$ eternity) is exactly the same as (L eternity), which we called L0, and $(x x)$ is

(lambda (lat)<br>(cond<br>[(null? lat) 0]<br>[else (add1 (LO (cdr lat)))]))

which is $\mathrm{L} 1 . \mathrm{In}$ other words, M 1 is the same as L 1 .
(define M1 ((lambda (x) (xx))
(lambda (f)
(lambda (lat) (cond
[(null? lat) 0]
[else (add1 ((f eternity) (cdr lat)))]))))

Finally, instead of falling back on eternity to fail if we go too far through the list, apply $f$ back to itself:
(define N ((lambda ( x ) ( xx ))
(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((f f) (cdr lat)))]))))
(define N ((lambda (x) (x x))
(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((ff) (cdr lat)))])))))
This is easier to think about if we let X be that lambda(f) expression.
$M$ is ( $X X$ ), which is
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { null? lat) 0] }} \\
& [(\text { else (add1 ( }(\mathrm{XX})(\text { cdr lat }))]))
\end{aligned}
$$

And this is exactly the length function!

Don't let the defines we have done fool you; we are saying that the length function is the result of applying
(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((f f) (cdr lat)))]))
to itself. We are getting recursion here without extending the environment. No function is "calling itself", yet we are recursing through the lat.

To recap, if we let X be (lambda (f)
(lambda (lat) (cond
[(null? lat) 0]
[else (add1 ((f f) (cdr lat)))]))))
then $(X X)$ is the length function for lats. We can write other recursions in this style.
(define Y (lambda (f);
(lambda (a lat)
(cond
[(null? lat) \#f]
[(eq? a (car lat)) \#t]
[else ( (f f) a (cdr lat))]))))

Then $(Y Y)$ is the member? function.
(define Z (lambda (f)
(lambda (a lat)
(cond

```
[(null? lat) null]
[(eq? a (car lat)) (cdr lat)] [else (cons (car lat) ( (f f) a (cdr lat)))]))))
```

$(Z Z)$ is the rember function

We can recurse on numbers as easily as lats:
(define W (lambda (f)
(lambda (n)
(cond
[(<n2) 1]
$[$ else (* $n((f f)(s u b 1 n)))]))))$
(W W) is the factorial function. You knew we couldn't do recursion and not mention factorials.

In Chapter 9 of The Little Schemer Friedman and Felleisen take this one step further.
Remember that we produced the length function as
(define N ((lambda (x) (x x))
(lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 ((f f) (cdr lat)))])))))
They rewrite this so it is the result of applying a complex function $Y$ to (lambda (length)
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 (length (cdr lat)))])))
This actually looks like the usual definition of length, surrounded by a lambda (length).
That complex function $Y$ is called the " $Y$ Combinator". It was discovered by Haskell Curry.

